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Abstract

A stable adaptive neural-network-based control scheme for dynamical systems is presented and a
continuous recurrent neural network model of dynamical systems is constructed in this paper. A novel
algorithm for updating weights in the neural network, which is not derived from the conventional back
propagation algorithm, is also constructed. The proposed control law is obtained adaptively by a
continuous recurrent neural network identifier, but not by a conventional neural network controller. In
such a way, the stability in the sense of the Lyapunov stability can be guaranteed theoretically. The control
error converges to a range near the zero point and remains within the domain throughout the course of the
execution. Numerical experiments for a longitudinal vibration ultrasonic motor show that the proposed
control scheme has good control performance.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Adaptive control of dynamical systems has been an active area of research for many
years. Most of the problems were solved for the adaptive control of linear systems. Recent
advances in nonlinear control theory have inspired the development of adaptive control
schemes for nonlinear plants [1,2]. A common assumption of adaptive control schemes is that
either all or parts of the system dynamics are known. Therefore, most of the general problems
of controlling a totally unknown system cannot even be attempted using conventional control
methods.
An obvious solution to overcome the problem is to introduce identification techniques in the

control algorithm. The problem of identification consists of choosing an appropriate
identification model and adjusting its parameters such that the response of the model to an
input is the same as the original system. Following the development of artificial neural network
(ANN), the identification schemes based on ANN have become one of the main methods. An
ANN is modeled simulating the biological neural networks in the brain and consists of a number
of neurons and weighted links. The ANN has a good capability for parallel computation, fault
tolerance and mapping approximation [3]. It has been applied widely in the field of modeling,
identification and control of dynamical systems, computational mechanics, and many others
[4–13].
Stabilization is a key problem in the analysis and design of control systems. An appropriate

feedback law should be designed to render the system stable. Due to external disturbances, as well
as modeling errors, the conventional training algorithm of ANN, such as the back-propagation
algorithm [14], experiences great difficulty in rendering the system stable. Furthermore,
conventional control methods using ANN usually need two structures of the ANN [4,14–16].
Such structures bring down the speed of convergence. So, it is very difficult to achieve a stable and
on-line control using the conventional ANN methods.
In recent years, some neural network methods based on the Lyapunov stability theorem have

been proposed [17–19]. These methods can make the system stable even if the real systems are
contaminated with noise or there exists uncertainty in system parameters or dynamics. But
existing results are constrained to a certain system class and also suffer from the need of imposing
additional restrictions to the currently available scheme. Usually these imposed restrictions
cannot be satisfied in real systems, and applied in real world. How to construct a practicable
scheme using neural network to adaptively stabilize unknown nonlinear systems has a strong
theoretical as well as practical importance when there exist external disturbances and uncertainty
in system parameters or systems.
This paper proposes a practical control method using neural network to adaptively stabilize

nonlinear dynamical systems. A continuous model of recurrent neural network is constructed to
identify the dynamical system. In order to guarantee stability, a novel algorithm for updating the
weights of the neural network is provided. The proposed control law is obtained adaptively by the
continuous recurrent neural network identifier but not by a conventional neural network
controller, which theoretically guarantees the stability in the sense of the Lyapunov stability. The
control error converges to a range near the zero point and keeps within this range throughout the
execution. The proposed networks are applied to the identification and speed control of an
ultrasonic motor (USM).
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An USM is a newly developed motor. It is a device that transforms vibration and wave
motions of solids into progressive or rotational motions by means of contact frictional forces.
The USM has some excellent performances and useful features, such as high torque at low
speeds, compactness in size, no electromagnetic interference, short start–stop times, and
many others. Owing to the advantages mentioned above, the USM has been used in many
practical applications [20–22], such as MEMS, robots, medical instruments, cameras and
aeronautics.
The USM is a peculiar motor whose driving principle is different from that of other

electromagnetic-type motors, and its characteristics have not been elucidated in detail. It has
strong nonlinear speed characteristics that vary with the driving frequency, voltage, load, the
temperature and many other factors. It is therefore difficult to construct a precise and practical
application model for the USM. In recent years, some models of the USM have been proposed
[23,24], but most models are too complex to apply to practical applications. Therefore, it is also
difficult to control the USM using the conventional algorithms.
In this paper, numerical simulations are performed using the proposed stable adaptive neural

method for the speed control of a longitudinally vibrating USM. Numerical experiments show
that the proposed control scheme has good stable performance subject to external disturbances
and uncertainty in the USM.
2. Problem statements

From the control designer’s point of view, it is difficult to realize a theoretical analysis
of nonlinear dynamical systems, and sometimes it is also unnecessary to construct a complex
model of nonlinear dynamical systems. A neural network model is proposed in this paper to
approximate the nonlinear input–output mapping of the systems. The complex theoretical
analysis of the operational mechanism and exact mathematical description of dynamical systems
are avoided in the model and the unique requirement for the system is the input–output
information.
A three-layer neural network with m input neurons, n hidden neurons and one output neuron is

shown in Fig. 1. It has a diagonal structure in the hidden layer, that is, there are no interactions
among different hidden neurons, which are shown using dashed lines in Fig. 1. The mathematical
description of the model is given by [14]

xjðkÞ ¼
X

i

bjiðkÞuiðkÞ þ ajðkÞsðxjðk � 1ÞÞ; j ¼ 1; 2; . . . ; n;

yðkÞ ¼
X

j

pjðkÞsðxjðkÞÞ; ð1Þ

where xjðkÞ represents the input of the jth hidden neuron in time k, uiðkÞ the ith control input,
ajðkÞ; bjiðkÞ and pjðkÞ represent the self-recurrent weights of hidden neurons, the weights between
the input and hidden layer and the weights between the hidden and output layer, respectively. The
hyperbolic tangential function sðxÞ ¼ ð1� e�xÞ=ð1þ e�xÞ is selected as the activation function of
the hidden neurons.
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Fig. 1. Architecture of diagonal recurrent neural network in hidden layer.

X. Xu et al. / Journal of Sound and Vibration 285 (2005) 653–667656
Supposing that the sampling interval DT is small enough, Eq. (1) can be written as

_xj ¼ �dxj þ AjsðxjÞ þ
X

i

Bjiui; j ¼ 1; 2; . . . ; n;

yðkÞ ¼
X

j

pjðkÞsðxjðkÞÞ; ð2Þ

where d ¼ 1=DT ; Bji ¼ bji=DT and Aj ¼ aj=DT : Eq. (2) can be written in a matrix form as

_x ¼ �Dxþ ASðxÞ þ Bu;

y ¼ PSðxÞ; ð3Þ

where x 2 Rn is the input vector of hidden neurons, u 2 Rm is the control input, D ¼ dIn is the
constant diagonal matrix with d40: A 2 Rn�n; B 2 Rn�m and P 2 Rl�n are the self-recurrent
weight matrix in the hidden layer, the weight matrix between the input and hidden layers, and the
weight vector between the output and hidden layers, respectively. y 2 R is the output of the ANN.
SðxÞ ¼ fsðx1Þ; . . . ; sðxnÞg

T: Because sðxÞ is the hyperbolic tangential function, kSðxÞkps0; where
s040 and k � k represents Frobenius norm. The recurrent neural network model shown in Fig. 1
can be viewed as an extension of the Hopfield network.
Due to the approximation capabilities of the neural network [3], it can be assumed without loss

of generality that the input–output mapping of the system can be represented by a recurrent
neural network mentioned above, plus an error term �ðx; uÞ: In other words, there exist ideal
weight values A�

2 Rn�n; B� 2 Rn�m and P� 2 Rl�n; which are unknown, but the matrices are
constant or vary slowly with time, satisfying kA�

kpA0; kB
�kpB0 and kP�kpP0; where A0;B0

and P0 are positive constants, which enable the following system:

_x ¼ �Dxþ A�SðxÞ þ B�uþ �ðx; uÞ;

Y ¼ P�SðxÞ ð4Þ
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to approximate the input–output mapping of the system, where �ðx; uÞ is the modeling error or
external disturbance and k�ðx; uÞkp�0 ð�040Þ:
For simplification, this paper assumed that desired value yd and its derivativeness with respect

to time _yd are bounded, that is jyd jpy0 and j _yd jpȳ0; where y040 and ȳ040:
3. Stable adaptive control

According to the above discussion, the problem of stable adaptive neural control of the system
can be described as follows: for a given proposed output ydðtÞ; seek a control input uðtÞ to make
the output Y of Eq. (4) trace the designated output with an acceptable precision and require all the
signals in the closed loop to be bounded.
Suppose that A; B and P are the approximated values of A�; B� and P�; respectively. Define

~A ¼ A� A�; ~B ¼ B� B� and ~P ¼ P� P�; then Eq. (4) can be written as follows:

_x ¼ �Dxþ ASðxÞ þ Bu� ~ASðxÞ � ~Buþ �ðx; uÞ;

Y ¼ PSðxÞ � ~PSðxÞ: ð5Þ

Denotes s0ðxÞ ¼ dsðxÞ=dx; define F ¼ diag½s0ðx1Þ; . . . ; s0ðxnÞ� and C ¼ PF; ~C ¼ ~PF; C�
¼ P�F:

In order to guarantee the stability of the control system in the sense of Lyapunov stability [25],
we construct the update law on the weights in the neural network and the control inputs are as
follows:

_A ¼ �KaAþ KCTeSTðxÞ; (6)

_B ¼ �KbBþ KCTeuT; (7)

_P ¼
KeðFDxÞT

1þ kxk
; (8)

u ¼
ðCBÞT½CDxþ 1

lCASðxÞ þ _yd � e�

ð1þ kCk2kBk2Þ � ð1þ kAk þ kxkÞ
; (9)

where e ¼ z � yd is the control error, z the actual output of the system, and K ;Ka;Kb; l are all
positive parameters to be selected. The schematic diagram of the control system is shown in Fig. 2.

Lemma. If Eq. (9) is adopted as the control law and Eqs. (6)–(8) as the training algorithm of the

adjustable weights, then the weight matrices A, B and P of the neural network and the input of the
hidden neuron x and control input u are all bounded.

Proof. From Eq. (8), we have

k _Pk ¼
KeðFDxÞT

1þ kxk

����
����pKjej � kFk � kDk � kxk

1þ kxk
pKjej � kFk � kDk� (10)
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Fig. 2. Schematic diagram of the control system.
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Owing to the boundedness of the output of a dynamic system and the desired value, error
e ¼ z � yd is bounded. Because e, F and D are bounded, _P is bounded. And the initial values of
weights P are bounded, the weights P, as well as weights ~P; are still bounded after finite times
updating. Then, according to the definition of C, ~C and C�; they are all bounded. Therefore, in the
following we suppose that jCjpc0; j ~Cjp~c0 and jC�

jpc�0 ðc040; ~c040; c�040Þ:
According to Eq. (9), we have

juj ¼
ðCBÞT½CDxþ 1

lCASðxÞ þ _yd � e�

ð1þ kCk2kBk2Þð1þ kAk þ kxkÞ

�����
�����

p
kCk � kDk � kxk þ 1

l kCk � kAk � kSðxÞk þ k _yd � ek

ð1þ kAk þ kxkÞ

p
c0dkxk þ

1
l c0s0kAk þ k _yd � ek

ð1þ kAk þ kxkÞ
p

maxðc0d; 1l c0s0Þðkxk þ kAkÞ þ k _yd � ek

ð1þ kAk þ kxkÞ

pmax c0d;
1

l
c0s0

� �
þ

k _yd � ek

ð1þ kAk þ kxkÞ
pmax c0d;

1

l
c0s0

� �
þ k _ydk þ kek: ð11Þ

Noting that e and _yd are bounded, we have the control law u is also bounded.
Owing to the boundedness of e, u;C and SðxÞ; from Eqs. (6) and (7) and in a similar way to the

discussion of the boundedness of weights P; it can be seen that the weights A and B are also
bounded. Furthermore, from the first formula of Eq. (1), it can also be seen that the input of the
hidden neuron x is bounded. This completes the proof of the lemma. &

Because u and x are bounded, in the following we suppose that jujpu0 and
jxjpx0ðu040;x040Þ:



ARTICLE IN PRESS

X. Xu et al. / Journal of Sound and Vibration 285 (2005) 653–667 659
Theorem. Consider Eq. (5). Adopt Eq. (9) as the control law and Eqs. (6)–(8) as the training

algorithm of the adjustable weights. If the positive numbers K ;Ka; l satisfy
(1)
 K ¼ K1 þ K2;Ka ¼ Ka1 þ Ka2; where K1;K2;Ka1;Ka2 are positive.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

(2)
 lXKc0s0=ð 2K2Ka2 � Kc0s0Þ and K2Ka24ðKc0s0Þ

2=2:
Then the trace error converges to a range near the zero point and remains within the domain
throughout the execution and all signals in the closed loop are bounded.

Proof. Take the Lyapunov function as

L ¼ 1
2
ðKeTe þ trf ~A

T ~Ag þ trf ~B
T ~Bg þ trf ~P

T ~PgÞ (12)

where trf�g represents the trace of a matrix defined as trfATAg ¼
P

i;jðaijÞ
2
¼ kAk2:

Differentiating Eq. (12) with respect to time, we obtain

_L ¼ KeT _e þ trf
_~A
T
~Ag þ trf _~B

T
~Bg þ trf _~P

T
~Pg: (13)

According to the above discussion, there exist ideal weight values A�;B� and P� such that the
output of Eq. (5) satisfies Y � z; then we have e ¼ z � yd � Y � yd : Using Eq. (4) we have

_e ¼ _Y � _yd ¼ C� _x� _yd ¼ C�
ð�Dxþ A�SðxÞ þ B�uþ �ðx; uÞÞ � _yd : (14)

Substituting Eq. (14) into Eq. (13) and noticing that ~A ¼ A� A�; ~B ¼ B� B� and ~P ¼ P� P�;
we have

_L ¼ KeTC�
ð�Dxþ A�SðxÞ þ B�uþ �ðx; uÞÞ � KeT _yd þ trf

_~A
T
~Ag þ trf _~B

T
~Bg þ trf _~P

T
~Pg

¼ KeTC��ðx; uÞ þ KeTðC� ~CÞð�Dxþ A�SðxÞ þ B�uÞ � KeT _yd þ trf _A
T ~Ag þ trf _B

T ~Bg þ trf _P
T ~Pg

¼ KeTC��ðx; uÞ þ KeTCð�Dxþ A�SðxÞ þ B�uÞ � KeT ~Cð�Dxþ A�SðxÞ þ B�uÞ � KeT _yd

þ trf _A
T ~Ag þ trf _B

T ~Bg þ trf _P
T ~Pg

¼ KeTC��ðx; uÞ þ KeTCð�Dxþ A�SðxÞ þ B�uÞ þ KeT ~CDxþ w � KeT _yd

þ trf _A
T ~Ag þ trf _B

T ~Bg þ trf _P
T ~Pg; ð15Þ

where w ¼ �KeT ~CðA�SðxÞ þ B�uÞ: Then

kwk ¼ kKeT ~CðA�SðxÞ þ B�uÞkpKjej � k ~Ck � ðkA�
k � kSðxÞk þ kB�k � jujÞ

pKjej~c0ðA0s0 þ B0u0Þ ¼ Kjejw0; ð16Þ

where w0 ¼ ~c0ðA0s0 þ B0u0Þ:
In Eq. (15), the item KeTCð�Dxþ A�SðxÞ þ B�uÞ can be written as

KeTCð�Dxþ A�SðxÞ þ B�uÞ ¼ KeTCð�Dxþ ðA� ~AÞSðxÞ þ ðB� ~BÞuÞ

¼ � KeTCDxþ KeTCASðxÞ þ KeTCBu� KeTC ~ASðxÞ

� KeTC ~Bu: ð17Þ
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Substituting Eqs. (6)–(9) and (17) into Eq. (15), we have

_L ¼ KeTCð�Dxþ ASðxÞ þ BuÞ þ KeTC��ðx; uÞ þ KeT ~CDx�
1

1þ kxk
KeT ~CDx

� KeT _yd � KatrfA
T ~Ag � KbtrfB

T ~Bg þ w

¼ � KeTCDxþ KeTCASðxÞ þ KeTCB
ðCBÞT½CDxþ ð1=lÞCASðxÞ þ _yd � e�

ð1þ kCk2kBk2Þð1þ kAk þ kxkÞ
þ KeTC��ðx; uÞ

þ 1�
1

1þ kxk

� �
KeT ~CDx� KeT _yd � KatrfA

T ~Ag � KbtrfB
T ~Bg þ w

p� KeTe þ K 1þ
1

l

� �
eTCASðxÞ þ KeTC��ðx; uÞ þ

kxk

1þ kxk

� �
KeT ~CDx

� KatrfA
T ~Ag � KbtrfB

T ~Bg þ w; ð18Þ

where the inequality CBðCBÞT=ð1þ kCk2kBk2Þo1 is employed.
Moreover, from Ref. [17], we have

trðAT ~AÞ ¼ 1
2
ðkAk2 þ k ~Ak2 � kA�

k2Þ; (19)

trðBT ~BÞ ¼ 1
2
ðkBk2 þ k ~Bk2 � kB�k2Þ: (20)

Substituting Eqs. (16), (19) and (20) into Eq. (18), we have

_Lp� Kjej2 þ K 1þ
1

l

� �
jej kCk kAk kSðxÞk þ Kjej kC�

k k�ðx; uÞk þ K
kxk

1þ kxk
� jej � k ~Ck � kDk � jxj

�
Ka

2
kAk2 �

Ka

2
k ~Ak2 þ

Ka

2
kA�

k2 �
Kb

2
kBk2 �

Kb

2
k ~Bk2 þ

Kb

2
kB�k2 þ kwk

p� Kjej2 þ K 1þ
1

l

� �
c0s0jej kAk þ Kc�0�0jej þ Kjej~c0dx0 þ Kjejw0 �

Ka

2
kAk2 �

Kb

2
kBk2

þ
Ka

2
kA�

k2 þ
Kb

2
kB�k2

p� Kjej2 þ K 1þ
1

l

� �
c0s0jej kAk þ Kðc�0�0 þ w0 þ ~c0dx0Þjej �

Ka

2
kAk2 �

Kb

2
kBk2

þ
Ka

2
A2
0 þ

Kb

2
B2
0

¼ � Kjej2 þ K 1þ
1

l

� �
c0s0jej kAk þ Kc̄jej �

Ka

2
kAk2 �

Kb

2
kBk2 þ J; ð21Þ

where c̄ ¼ c�0�0 þ w0 þ ~c0dx0; J ¼ ðKa=2ÞA
2
0 þ ðKb=2ÞB

2
0:

Choosing positive numbers K1;K2 and Ka1;Ka2 to satisfy K ¼ K1 þ K2 and Ka ¼ Ka1 þ Ka2;
we can re-write Eq. (21) as

_Lp� K1jej
2 � K2jej

2 � K 1þ
1

l

� �
c0s0jej kAk þ

Ka2

2
kAk2

� �
þ Kc̄jej �

Ka1

2
kAk2 �

Kb

2
kBk2 þ J:

(22)
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If we choose lXKc0s0=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2Ka2

p
� Kc0s0Þ and K2Ka24ðKc0s0Þ

2=2; then

_Lp� K1jej
2 �

ffiffiffiffiffiffi
K2

p
jej �

ffiffiffiffiffiffiffiffi
Ka2

2

r
kAk

 !2

þ Kc̄jej �
Ka1

2
kAk2 �

Kb

2
kBk2 þ J

p� K1jej
2 þ Kc̄jej �

Ka1

2
kAk2 �

Kb

2
kBk2 þ J: ð23Þ

Define a range

Oe :¼ fejK1jej
2 � Kc̄jej � Jp0g; (24)

O :¼ ejK1jej
2 � Kc̄jej � J þ

Ka1

2
kAk2 þ

Kb

2
kBk2p0

� 
: (25)

From Eqs. (24) and (25), it can be seen that O � Oe:
Defining scalar functions HðfÞ ¼ K1f

2
� Kfc̄ � J and xmax ¼ maxðejHðjejÞp0Þ; we have

xmax ¼
Kc̄ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2c̄2 þ 4K1J

p
2K1

: (26)

Eq. (23) can be written as

_Lp� HðjejÞ �
Ka1

2
kAk2 �

Kb

2
kBk2: (27)

In the following, it will be shown that the control error will converge to the range Oe and will
remain within this range.
Let eðtÞ be a solution corresponding to the initial condition eðt0Þ: For the discussion later, we

distinguish the following three possible cases:
Case 1: From Eqs. (23) and (24), when the error eðtÞ is out of the range Oe; HðjejÞ40: Hence,

according to Eq. (27), we have _Lp� HðjejÞ � ðKa1=2ÞkAk
2 � ðKb=2ÞkBk

2o0:
Suppose that eðtÞeOe; 8t 2 ½t0;þ1Þ: Because _L is strictly negative, there exists a time T040

such that _Lp� bo0 when t4T0; whereb is a positive number. Integrating _L from T0 to t, we
have

R t

T0

_Ldtp
R t

T0
�bdt and LðtÞpLðT0Þ � bðt � T0Þ: It can be seen that LðtÞo0 when t ! þ1:

This contradicts the definition of L from Eq. (12). Therefore, eðtÞ will converge to the range Oe in
finite time.

Case 2: Suppose that at some time t�Xt14t0; it holds that eðtÞ is such that eðt�Þ 2 Oe=O: In this
case, we have _Lp0 according to Eqs. (23)–(25). Then eðtÞ remains within the range Oe:

Case 3: When eðtÞ 2 O; we have eðtÞ 2 Oe because O � Oe:
Let eðtÞ be a solution resulting from the initial condition eðt0Þ; to prove the uniform

boundedness of eðtÞ; 8t4t0; we consider the following cases:
Case a: If eðt0ÞeOe; as mentioned above, eðtÞ will converge to the range Oe in finite time. Then

we have jeðtÞj2 ¼ eTðtÞeðtÞpeTðt0Þeðt0Þ ¼ jeðt0Þj
2 because Oe is the range near zero point.

Case b: If eðt0Þ 2 Oe; eðtÞ will be kept in the range Oe according to the above-mentioned cases 2
and 3. Therefore, we obtain jeðtÞjpxmax:
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Noticing the boundedness of A;B;P; u and x from lemma, we complete the proof of the
theorem. &

According to the theorem, though the ideal values A�; B� and P�; for the weights A, B and P,
cannot be approached exactly, the control error can converge into the range Oe near zero and stay
in that domain throughout the execution.
From the control designer’s point of view, the aim of control does not render the outputs of the

system to reach the reference values exactly but approximately with an acceptable precision.
According to Eq. (26) we have

xmax ¼
Kc̄ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2c̄2 þ 4K1J

p
2K1

¼
ðK1 þ K2Þc̄ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK1 þ K2Þ

2c̄2 þ 4K1J

q
2K1

¼
1

2
c̄ 1þ

K2

K1

� �
þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̄2 1þ

K2

K1

� �2

þ
4J

K1

s
: ð28Þ

From Eq. (28) it can be seen that if we choose larger K1 or make the K2=K1 smaller, the control
precision would be high. According to this principle, though the control error cannot reach zero,
we can adjust the parameters K, K1 and K2 such that the error range Oe is small enough to
improve the precision.
In addition, because the initial weights in the neural network may be far from the ideal

weights, the control system may be unstable in the transient state of identification process.
Therefore, the weights can be updated off-line in the neural network according to the static
input–output information of the dynamical system or the experiential control law such as PID
controller can be added in the initial stage to guarantee the stability of the control system in the
transient state.
Rotor

Piezoelectric vibrator

Vibratory piece 

Direction of the rotation

~

Fig. 3. Schematic diagram of the ultrasonic motor.
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4. Numerical simulation results and discussion

A longitudinal vibration USM [23,26] is one of the most important USMs. In this paper,
numerical simulations are performed using the proposed method for the speed control of a
longitudinal vibration USM shown in Fig. 3. Some parameters of this USM model are taken as
driving frequency 27.8 kHZ, amplitude of driving voltage 300V, allowed output moment
2.5 kg cm, rotation speed 3.8m/s.
In order to check the validity of the proposed control method, firstly the proposed speed is

chosen as sinusoidal and step types. The external interferential signal dðtÞ ¼ 0:12 sinð5ptÞ þ
0:05 sin3ð10ptÞ þ 0:1 is added into the output of the USM. Fig. 4(b) and (d) show the control
results with the two different proposed speeds, respectively. From the figures, it can be seen that
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Fig. 4. Control result to different reference speeds when existing external interferential signal. (a) Reference speed with

step type; (b) control result for the reference speed with step type; (c) reference speed with sinusoidal type; (d) control

result for the reference speed with sinusoidal type.
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the proposed control method can render the output of the USM converge to around the
referenced value on the condition that external disturbance is exerted on the USM. Fig. 4(b)
shows that the proposed control method has strong adaptive ability on the condition that the
proposed value changes suddenly.
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Fig. 5 is the speed control curve when we exert the inverse moment disturbance with amplitude
of 0.2N cm at t 2 ½10:6; 12� s: It can be seen that the output of the USM can return to near the
reference value. This shows that the proposed method has good adaptive ability when the external
load changes suddenly.
Fig. 6 shows the speed control results when parameters are changed strongly for the load at

50%, elastic stiffness at 2 times and the bend modulus of elasticity at 2 times when t410:6 s. It can
be seen that the proposed method can compensate for the effect of parameter variation with time.
Although the strong disturbance makes the error out of zero point, the error can return near zero
for a short-time control. This shows the proposed method has a good adaptive performance with
respect to parameter variation.
Fig. 7 shows the comparison of the average errors using different algorithms when the

desired speed value is constant. In Fig. 7, the dotted line represents the average error curve
obtained using an existing neural control method [27] together with the fast adaptive learning
algorithm presented in Ref. [28]. The solid line represents the results obtained using the method
proposed in this paper. From Fig. 7 it can be seen that the time of convergence
using the proposed method is about 6 s, which is much shorter than the time of convergence
using the existing method for about 12 s. From the comparison it can be seen that the
proposed method is superior to the conventional method in both control precision and
convergence speed. This shows that the proposed method possesses good on-line per-
formance. Fig. 8 shows the variation of the norm of the weights. It can be seen that the weights
are bounded.
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5. Conclusions

A stable adaptive speed control scheme of nonlinear dynamical systems based on a continuous
recurrent neural network is proposed. In order to guarantee stability, a newly developed algorithm
of updating weights in the neural network and the control inputs are provided according to the
Lyapunov stability theorem. The control error could approach a range around zero point and it
keeps within the domain throughout the execution. The proposed method is examined for its on-line
adapting ability, recovering ability from disturbances, and adaptive performance to parameters
variation. The simulation results show that the proposed method based on the continuous recurrent
neural network is promising for identification and control during on-line operation.
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